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Abstract The physical parameterization of key processes in land surface models (LSMs) remains
uncertain, and new techniques are required to evaluate LSMs accuracy over large spatial scales. Given
the role of soil moisture in the partitioning of surface water fluxes (between infiltration, runoff, and
evapotranspiration), surface soil moisture (SSM) estimates represent an important observational benchmark
for such evaluations. Here, we apply SSM estimates from the NASA Soil Moisture Active Passive Level‐4
product (SMAP_L4) to diagnose bias in the correlation between SSM and surface runoff for multiple
Noah‐Multiple Physics (Noah‐MP) LSM parameterization cases. Results demonstrate that Noah‐MP surface
runoff parameterizations often underestimate the correlation between prestorm SSM and the event‐scale
runoff coefficient (RC; defined as the ratio between event‐scale streamflow and precipitation volumes). This
bias can be quantified against an observational benchmark calculated using streamflow observations and
SMAP_L4 SSM and applied to explain a substantial fraction of the observed basin‐to‐basin (and case‐to‐case)
variability in the skill of event‐scale RC estimates from Noah‐MP. Most notably, a low bias in
LSM‐predicted SSM/RC correlation squanders RC information contained in prestorm SSM and reduces LSM
RC estimation skill. Based on this concept, a novel case selection strategy for ungauged basins is
introduced and demonstrated to successfully identify poorly performing Noah‐MP parameterization cases.

Plain Language Summary Land surface models are commonly tasked with determining what
fraction of incoming rainfall infiltrates into the soil versus runs off into stream channels. The key factor
determining this partitioning is the amount of water in the soil column prior to a storm event (e.g., more
prestorm soil moisture is generally associated with decreased amounts of infiltration and increased surface
runoff). However, due to a lack of soil moisture observations available at large scales, it has generally
been difficult to assess whether existing models are accurately capturing the true relationship between
prestorm soil moisture and runoff. Using newly available data from the NASA Soil Moisture Active/Passive
(SMAP) mission, this paper demonstrates that land surface models often misrepresent the impact of
prestorm surface soil moisture on runoff generation. This misrepresentation is shown to have a strong
negative impact on the ability of models to accurately estimate runoff. A new calibration technique, based on
the SMAP Level 4 soil moisture product, is introduced for eliminating this bias. Overall, results demonstrate
how remotely sensed soil moisture can potentially play an important role in enhancing the operational
forecasting of streamflow.

1. Introduction

Serious questions remain concerning the characterization of key processes in land surface models (LSMs).
For example, the representation of surface runoff generation in LSMs is often highly parameterized and does
not generally reflect our best understanding of physical processes responsible for the generation of runoff
(Clark et al., 2015; Lohmann et al., 1998; Yang et al., 2011; Zheng et al., 2017). Shortcomings in model phy-
sics, parameter selection, and forcing data manifest themselves in the relatively limited ability of LSMs to
predict streamflow at short time scales (Xia, Mitchell, Ek, Cosgrove, et al., 2012). Despite these concerns,
LSMs are increasingly being utilized for operational hydrologic forecasting. For example, the National
Water Model (NWM), currently in development as the next‐generation hydrological forecasting system in
the United States, relies on the Noah‐Multiple Physics (Noah‐MP) LSM to estimate surface and subsurface
runoff fluxes used as the basis for its streamflow forecasts (Salas et al., 2018).
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The relationship between soil moisture and runoff generation lies at the
heart of LSM water balance parameterizations (Koster & Milly, 1997;
Meyles et al., 2003; Penna et al., 2011). From a hydrologic forecasting
perspective, the key issue is the degree to which variations in prestorm sur-
face soil moisture (SSM) impact the evolution of runoff during a storm
event and subsequent values of event‐scale runoff coefficients (RC; i.e.,
the fraction of total precipitation volume during a storm event converted
into streamflow). To date, the direct evaluation of this partitioning has
been difficult due to shortcomings in the availability and accuracy of
large‐scale SSM products. However, despite their shallow vertical support
(generally less than 5 cm), recent advances in remote sensing have yielded
new SSM products with significant information content for hydrologic
forecasting (Crow et al., 2017; Koster et al., 2018). This, in turn, has
enhanced our ability to critique the representation of SSM/RC coupling
in LSMs.

Crow et al. (2017) and Koster et al. (2018) reflect a notable trend toward
utilizing remotely sensed SSM products to evaluate the parameterization
of hydrologic processes in LSMs. This goes beyond the typical use of
satellite‐based SSM to improve model estimates through the minimiza-
tion of random errors, generally associated with uncertain external for-
cing data, via data assimilation (e.g., De Lannoy & Reichle, 2016). Using
SSM from the NASA Soil Moisture Active Passive Level‐4 product

(SMAP_L4), Crow et al. (2018) demonstrated that LSMs tend to underestimate the correlation between
prestorm SSM and event‐scale RC. This implies that runoff parameterizations within LSMs place exces-
sive weight on factors unrelated to prestorm SSM (e.g., fine‐scale variations in precipitation intensity
during a storm event) and neglect a portion of the predictive skill afforded by skillful estimates of
prestorm SSM.

However, the analysis in Crow et al. (2018) was limited to 16 basins located in the south central contiguous
United States (CONUS). In addition, its use of multiple LSMs, each with much different surface runoff para-
meterizations, soil layer structures, and forcing data, made it challenging to obtain reliable insights into the
impact of model structure on the skill of modeled RC. For these reasons, Crow et al. (2018) stopped short of
demonstrating a clear linkage between biases in LSM correlation and the reduction of skill in LSM surface
runoff predictions. Here, we conduct a series of more systematic experiments involving a single LSM
(Noah‐MP) using multiple surface runoff parameterizations. The present analysis is based on a larger set
of 522 medium‐scale (500 to 10,000 km2) basins covering the entire CONUS region. In addition, we directly
trace the impact of bias in SSM/RC correlation on the ability of Noah‐MP to accurately characterize event‐
scale RC variations. Therefore, our dual objectives are to (i) systematically assess the impact of LSM
SSM/RC correlation bias on the accuracy of their event‐scale RC estimates and (ii) evaluate the use of
SMAP_L4 prestorm SSM for identifyingNoah‐MPparameterization cases that best represent the dependence
of RC on SSM.

2. Approach

The geographic domain for the analysis consists of the 522 medium‐scale (500–10,000 km2) basins shown in
Figure 1. Using criteria established during the Model Parameter Estimation Experiment [MOPEX; Duan
et al., 2006; Schaake et al., 2006], basins were selected for (i) acceptable levels of anthropogenic impound-
ment or diversion, (ii) adequate rain gauge coverage (i.e., greater than 0.6A0.3 gauges per basin where
A [km2] is basin area; Schaake et al., 2006) and (iii) the availability of near‐continuous United States
Geologic Survey (USGS) streamflow observations at their outlet. Note that selected basins exhibit a wide
range of long‐term RC (i.e., mean annual steam flow divided by mean annual precipitation) and thus
span a variety of hydroclimatic conditions (Figure 1). Our experimental period was 31 March 2015 to
30 March 2018.

Figure 1. Basin centroid location, basin area [km2] and long‐term RC [‐]
(i.e., annual mean streamflow divided by annual mean precipitation) for all
522 medium‐scale (500 to 10,000 km2) basins. Long‐term RC values are
based on USGS streamflow and NLDAS‐2 precipitation observations. RC =
runoff coefficient; USGS = United States Geological Survey; NLDAS‐2 =
North American Land Data Assimilation System project phase 2.
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2.1. Storm Event Definition

Within the experimental period, storm events were separated out using the approach of Crow et al. (2017). In
summary, each storm event started on a day with a precipitation accumulation exceeding 10 mm. The
impact of other threshold values is discussed below. Storm events were assumed to last for an N‐day period
defined by rounding the saturation time scale for each basin, calculated using the empirical expression given
by Linsley et al. (1982), up to the nearest positive integer value:

N days½ � ¼ CEIL A*2:59ð Þ0:2� �
(1)

where A is the area [km2] of each basin. CEIL is the upward integer rounding function. In this way, N is
defined to be larger than each basin's saturation time scale. Derived values ofN range from 5 days for smaller
(~500 km2) basins to 8 days for the largest (~10,000 km2) basins considered here. “Prestorm” SSM refers to
the lowest end‐of‐day (i.e., 24 UTC or the closest available alternative), basin‐averaged SSM for the 2‐day
period preceding a given storm event. Storm events interrupted by a new storm (i.e., another daily precipita-
tion accumulation exceeding 10 mm day−1) were masked, and a new event was assumed to begin coincident
with this second rain event.

2.2. Definition of Event‐Scale RC and Correlation Statistics

During storm events, precipitation and streamflow accumulation volumes were summed and divided
(streamflow over precipitation) to calculate the event‐scale RC. All daily precipitation was derived from
the North American Land Data Assimilation System project phase 2 (NLDAS‐2) forcing data set (Xia,
Mitchell, Ek, Cosgrove, et al., 2012). Streamflow was acquired from both LSMs (i.e., Noah‐MP and the
NWM) and actual USGS streamflow observations at the outlet of each basin in Figure 1. See below for
detailed descriptions of Noah‐MP, the NWM, and the SMAP_L4 SSM data.

Storm events were also masked for the presence of snow cover and/or frozen soil (determined via Noah‐MP
simulations). Since the event‐scale aggregation periods applied here (N) were, by construction, slightly larger
than the basin saturation time scales, no runoff routing was performed. Therefore, unless noted otherwise,
RC values were obtained directly from streamflow measurements or total (i.e., surface runoff plus baseflow)
runoff estimates acquired from an LSM. Sensitivity results (described below) were also generated following
the application of the USGS Hydrologic Separation [HYSEP; Sloto & Crouse, 1996] algorithm to isolate sur-
face runoff in individual storm events. At least 15 qualifying storm events were available for each of the 522
basins during our 3‐year analysis period between 31 March 2015 and 30 March 2018.

The analysis was based on sampling the temporal correlation between LSM estimates of prestorm SSM and
event‐scale RC (R[SSMLSM, RCLSM])—reflecting internal LSM estimates of RC dependence on prestorm
SMM, and between SMAP_L4 prestorm SSM estimates and USGS‐observed RC (R[SSMSMAPL4, RCUSGS])
—reflecting an external assessment of SSM/RC correlation between the two independently acquired esti-
mates. Unless otherwise noted, all correlations were Spearman‐type, where correlation was sampled after
the transformation of each time series variables into ranks (i.e., relative position labels within each indivi-
dual time series). This ensured that correlations were insensitive to the potential presence of monotonic non-
linearity in the relationship between event‐scale RC and prestorm SSM (Crow et al., 2017). More robust, full
mutual information calculations were not applied due to bias issues associated with calculating mutual
information for small sample sizes (which, for the 3‐year period considered here, were as small as 15 events
per basin). It should be noted that sampled Spearman correlations measure two‐way SSM/RC coupling
strength since SSM impacts RC (via runoff physics) and RC feeds back onto SSM (via soil water balance con-
siderations). However, our implicit assumption (verified below) is that the temporal correlation between
SSM and RC is dominated by processes controlling the dependence of RC on SSM.

Likewise, our evaluation of LSM RC skill was restricted to the ability to capture relative event‐to‐event var-
iations in RC—as summarized by the Spearman rank correlation coefficient between LSM‐estimated and
USGS‐observed RC (R[RCLSM, RCUSGS]). Such skill is a necessary but not sufficient requirement for a robust
hydrologic forecasting system. It does not, for example, guarantee good peak‐storm flow estimation nor is it
sensitive to bias in LSM RC estimates. Nevertheless, it is an important metric for streamflow estimation. If
biases are a concern, then the percentile rank of an RC estimate can be transformed into an absolute esti-
mate using long‐term histograms of event‐scale RC for a given basin.
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2.3. Noah‐MP LIS Modeling

Within each basin, off‐line, retrospective Noah‐MP v3.6 simulations (Xia et al., 2017) were conducted using
Version 7.2 of the NASA Land Information System (LIS; Kumar et al., 2006) and NLDAS‐2 meteorological
forcing data. NLDAS‐2 forcing data consists of North American Regional Reanalysis variables for all fields
except precipitation, which is instead derived via the use of hourly precipitation radar data to downscale
daily totals derived from the real‐time Climate Prediction Center rain gauge network (Xia, Mitchell, Ek,
Sheffield, et al., 2012). Noah‐MP simulations utilized a 15‐min time step and the 0.125° NLDAS‐2 spatial grid
(Xia, Mitchell, Ek, Sheffield, et al., 2012). All presented results are for a 3‐year period stretching from the
start of SMAP observations on 31 March 2015. Noah‐MP SSM values reflect the average soil moisture
in the top 10‐cmmodel layer of the vertical soil column. End‐of‐day (24 UTC) Noah‐MP surface (0‐ to 10‐cm)
soil moisture and daily (0 to 24 UTC) total runoff (surface runoff + baseflow) were extracted and spatially
resampled to generated daily, basin‐scale time series for each study basin. Noah‐MP RC estimates were
derived as the event‐scale ratio of accumulated streamflow volume normalized by accumulated precipitation
volume. See above for details on how individual events were defined and isolated from continuous precipi-
tation and streamflow time series data.

Separate Noah‐MP simulations were generated for all four Noah‐MP surface runoff parameterizations
described in Niu et al. (2011). These parameterizations include: (i) a simplified groundwater (SIM GW) case,
(ii) a simplified TOPMODEL (SIM TOP) case, (iii) a free‐drainage (FD) lower‐boundary assumption, and (iv)
a simplified surface runoff parameterization taken from the Biosphere Atmosphere Transfer Scheme (BATS).

The SIM GW approach is based on the simplified groundwater modeling approach presented in Niu et al.
(2007), where vertical recharge to an unconfined aquifer is estimated via a parameterization of Darcy's
Law. Groundwater storage calculations are then used to derive the pixel‐scale water table depth (ZWT

[m]) that is converted into saturated surface fractional area (Fsat). Neglecting frozen surfaces (which are
screened out of our analysis), this conversion is

Fsat ¼ Fsat;max exp −0:50 f ZWT−2:0 m½ �ð Þ½ � (2)

where Fsat,max is the maximum fraction of surface saturation (hard coded to a unitless fixed value of 0.38),
and f [m−1] describes the exponential decay of soil hydraulic conductivity with depth. Surface runoff is esti-
mated, via a saturation excess runoff mechanism, as Fsat multiplied by precipitation (or dew or snowmelt)
incident on the top of the soil column. The SIM GW approach also imposes a minimum water table depth
of 1.5 m. Baseflow (Q) is assumed proportional to exp[‐f (ZWT – 2.0 [m])].

SIM TOP runoff calculations are analogous to the SIM GW case except for two differences. First, ZWT is cal-
culated using an equilibrium water table calculation instead of a dynamic groundwater water balance (Niu
et al., 2005, 2011). Second, no minimum value is enforced for water table depths. Hence, Fsat and Q calcula-
tions are assumed to be directly proportional to exp[‐0.50 f (ZWT)] and exp[‐f(ZWT ‐ 2.0 [m]), respectively.

In contrast, both the FD and BATS parameterizations do not capture water table dynamics and instead
employ a gravitational free‐drainage baseflow approach as a bottom boundary condition. The two
approaches differ in their conceptualization of surface runoff. The FD approach uses the infiltration excess
surface runoff approach described by Schaake et al. (1996) based on an adaptation of the Soil Conservation
Service curve number approach. The amount of surface runoff predicted by this approach is known to be
sensitive to the specification of the Noah‐MP parameter REFKDT (Niu & Yang, 2011). This parameter effec-
tively controls the amount of weight applied to prestorm SSM conditions and is linearly related to the Kdt

parameter described by Schaake et al. (1996). The BATS physics package follows Yang and Dickinson
(1996) and parameterizes the fraction of incident precipitation converted into runoff simply as the qth power
of the degree of saturation in the top 2 m of the soil column.

For each surface runoff parameterization case described above, we selected (and subsequently varied) one
key parameter. For the SIM GW and SIM TOP cases, it was the TOPMODEL f parameter constraining the
decay of saturated conductivity with depth. For the FD case, it was the REFKDT parameter modulating
the impact of prestorm soil moisture conditions on surface runoff. For the BATS case, it was the exponential
parameter (q) linking 2‐m soil moisture and surface runoff. We then ran additional Noah‐MP cases spanning
the physically feasible range for each parameter. In this way, we generated 16 Noah‐MP parameterization
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cases (4 for SIM GW, 5 for SIM TOP, 4 for FD, and 3 for BATS). Table 1
numbers these cases and lists their associated parameter values. For the
f parameter, values were modified by applying fixed multipliers (e.g.,
0.5, 2.0, 4.0, and 8.0 [‐]) to the recommended (i.e., hard‐coded) f value
for the Noah‐MP SIM GW and SIM TOP cases. Note that the hard‐coded
f value for the SIM GW case (2 [m−1]) is lower than that of the SIM TOP
case (6 [m−1]), which resulted in different f ranges applied for both cases
(Table 1).

All Noah‐MP LIS cases were spun up from a cold start on 1 January 2003
until the start of SMAP data availability, and our 3‐year experiment per-
iod, on 31 March 2015. Spin‐up adequacy was evaluated by dividing the
last 12 years of this (combined spin‐up plus the analysis) period into two
distinct 6‐year periods (i.e., 31 March 2006 to 31 March 2012 and 1 April
2012 to 30 March 2018) and examining differences in time‐averaged
Noah‐MP SSM values sampled within both periods. For all parameteriza-
tion cases listed in Table 1, the sign of these long‐term SSM differences
was the same as the sign of precipitation accumulation differences
(sampled over the same period) for (at least) 79% of the study basins.
This high percentage suggests that the relative impact of long‐term, SSM
transients (associated with the misspecification of initial SSM and water

table conditions) is relatively small—since long‐term SSM variations are adequately explained by coincident
long‐term differences in accumulated precipitation.

Due to the need to initialize a dynamic groundwater model, achieving adequate model spin‐up was expected
to be especially challenging for the Noah‐MP SIM GW case. Therefore, we conducted an additional spin‐up

analysis where the SIM GW parameterization case was spun up with 27
years of data (instead of our baseline 12‐year spin‐up period). This (more
than) doubling of the SIM GW spin‐up period resulted in no noticeable
impact on results—suggesting that, for this application, a 12‐year spin‐
up period is acceptable.

Figure 2 plots mean annual surface runoff and baseflow (both normalized
by mean annual precipitation) averaged across all 522 basins for each of
the 16 Noah‐MP LIS cases summarized in Table 1. For comparison,
observation‐based surface runoff and baseflow fractions derived from
USGS streamflow and the application of the USGS HYSEP baseflow
separation procedure are also plotted. While there is a slight tendency to
underestimate total runoff, all four baseline Noah‐MP parameterizations
(indicated by bold type in Table 1 and circled in Figure 2) produce reason-
able bulk estimates of total surface runoff and baseflow. However, the var-
iation of key parameters has a large impact on the relative partitioning of
total runoff into surface and baseflow contributions and a smaller, but still
considerable, impact on themagnitude of total (i.e., surface plus baseflow)
runoff. While our decision to focus only on a single parameter for each
Noah‐MP surface runoff case is somewhat arbitrary, it should be noted
that the resulting ensemble of Noah‐MP runoff parameterization cases
spans the physically realistic range of surface runoff/baseflow partitioning
(Figure 2) and SSM/RC correlation (see discussion of Figure 3 below).

2.4. NWM Modeling

NWM soil moisture and runoff results were extracted from Version 1.2
of the NWM retrospective run generated between 31 March 2015 and
31 December 2017 on a 1‐km spatial grid. A custom version of Noah‐
MP model based on the FD surface runoff case coupled with custom
groundwater and overland flow modules forms the modeling core of

Table 1
Details for the 16 Noah‐MP LIS Parameterization Cases Considered Here

Case
number

Noah‐MP runoff
parameterization

Key parameter
value

1 SIM GW f = 1.0 [m−1]
2 SIM GW f = 2.0 [m−1]
3 SIM GW f = 4.0 [m−1]
4 SIM GW f = 8.0 [m−1]
5 SIM TOP f = 3.0 [m−1]
6 SIM TOP f = 6.0 [m−1]
7 SIM TOP f = 12.0 [m−1]
8 SIM TOP f = 24.0 [m−1]
9 SIM TOP f = 48.0 [m−1]
10 FD REFKDT = 0.5 [‐]
11 FD REFKDT = 1.0 [‐]
12 FD REFKDT = 3.0 [‐]
13 FD REFKDT =5.0 [‐]
14 BATS q = 2 [‐]
15 BATS q = 4 [‐]
16 BATS q = 8 [‐]

Note. Default cases (reflecting the use of LIS Noah‐MP v3.6 recommended
parameter values) for each parameterization are indicated with bold type.

Figure 2. Long‐term mean surface runoff versus baseflow partitioning
(averaged across all 522 basins in Figure 1) for all Noah‐MP surface runoff
parameterization cases (see Table 1 for details). “USGS” results are based
on the processing of USGS streamflow measurements within each basin
through the USGS HYSEP baseflow separation package. Noah‐MP cases
using default parameter values are circled. The dashed line captures the
magnitude of total runoff (baseflow + surface runoff) acquired from USGS
observations. Noah‐MP = Noah‐Multiple Physics; USGS = United States
Geological Survey; HYSEP = Hydrologic Separation; SIM GW = simplified
groundwater; SIM TOP = simplified TOPMODEL; FD = free‐drainage.
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the NWM. Therefore, for the purposes of this analysis, the NWM can
be considered functionally equivalent to the retrospective, off‐line
Noah‐MP simulations described above. The only two differences being
that NWM v1.2 soil moisture and runoff results were downloaded
(http://edc.occ‐data.org/nwm/getdata/), while Noah‐MP results were
custom‐generated using LIS, and NWM simulations were generated
at a finer spatial resolution (1‐km versus 0.125° for Noah‐MP LIS
simulations).

As with the Noah‐MP LIS cases, the off‐line NWM retrospective
simulation was forced using 0.125° NLDAS‐2 observation forcing data
(downscaled via linear interpolation onto a 1‐km NWM grid cell).
The retrospective NMW simulation was initialized on 1 January 1993;
therefore, results from our period of interest (30 March 2015 and
31 December 2017) were derived after a 22‐year model spin‐up period.
Unfortunately, the retrospective NWM simulation is not yet available
for 2018, which forced us to utilize a slightly shorter 33‐month analysis
period (30 March 2015 to 31 December 2017) for NWM simulations rela-
tive to the full 36‐month period (31 March 2015 to 30 March 2018) pro-
vided by the Noah‐MP LIS simulations described above. In addition,
since the NWM v1.2 retrospective run only archived total runoff results,
it was not included in surface runoff/baseflow partitioning results shown
above in Figure 2.

End‐of‐day (24 UTC) NWM surface (0‐ to 10‐cm) soil moisture and daily
total (0‐ to 24‐UTC) runoff (surface runoff + baseflow) estimates were
extracted and spatially resampled (from their native 1‐km resolution) to
generate a daily, basin‐scale time series for each basin in Figure 1.

2.5. SMAP_L4 SSM

Basin‐averaged, daily, 0‐ to 5‐cm SSM values for the period 31 March 2015 to 30 March 2018 were extracted
from the global, 3‐hourly, 9‐km‐resolution SMAP_L4 Version 3 product (Reichle, de Lannoy, Koster, Crow,
et al., 2017). Note that this definition of SSM is slightly shallower than the 0‐ to 10‐cm depth applied for the
Noah‐MP LIS and NWM cases. The impact of this discrepancy will be discussed below. The SMAP_L4 pro-
duct is based on the assimilation of SMAP brightness temperatures (Piepmeier et al., 2017) into the NASA
Catchment LSM using an ensemble‐based data assimilation system (Reichle, de Lannoy, Liu, Ardizzone,
et al., 2017; Reichle, de Lannoy, Liu, Koster, et al., 2017). The Catchment LSM is driven with surface meteor-
ological forcing data from the Goddard Earth Observing System Forward‐Processing (GEOS‐FP) product
[https://gmao.gsfc.nasa.gov/GMAO_products/; Lucchesi, 2013]. Over CONUS, the GEOS‐FP precipitation
forcing is modified to match the precipitation from the NOAA Climate Prediction Center product at its
0.5°, daily scale.

Prior to the start of the SMAP data period in March 2015, the Catchment LSM was spun up from 1 January
1980 using Modern‐Era Retrospective Analysis for Research and Applications, Version‐2 (Gelaro et al.,
2017). For further details on the SMAP_L4 product and validation results, see (Reichle, de Lannoy, Liu,
Ardizzone, et al., 2017; Reichle, de Lannoy, Liu, Koster, et al., 2017). For consistency with the end‐of‐day
(24‐UTC) SSM output acquired from Noah‐MP LIS and the NWM, the 3‐hour time‐average SSM centered
at 22:30 UTC was used here as the daily SMAP_L4 SSM value. Note that SMAP_L4 surface runoff and base-
flow estimates, while available, were not utilized.

As a data assimilation product, the seasonality of SMAP_L4 SSM data matches that of the Catchment LSM.
Moreover, SMAP_L4 SSM is impacted by errors in the precipitation data used to force the Catchment LSM
(which differ from the NLDAS‐2 precipitation data used to force the Noah‐MP and NWM simulations and to
calculate observed RC results—see above). Nevertheless, Crow et al. (2017) demonstrated that SMAP_L4
SSM estimates contain significantly more skill for estimating event‐scale RC variations than SSM estimates
derived from either SMAP Level 2 SSM data or LSM simulations generated without data assimilation. In

Figure 3. Skill of event‐scale, LSM RC estimates (R[RCLSM, RCUSGS] along
the ordinate) as a function of LSM internal, event‐scale SSM/RC correlation
(R[SSMLSM, RCLSM] along the abscissa) for all 16 Noah‐MP LIS
parameterization cases in Table 1 and the NWM results (labeled as
“NWM”). Also plotted are the results using Noah‐MP SSM estimates as a
proxy for RC (i.e., R[SSMLSM, RCUSGS] along the ordinate; labeled as
“SSMdirect”). The dashed black line indicates the LOcally WEighted
Scatterplot Smoother (LOWESS) fit to all plotted results. 95% confidence
sampling intervals for points are generally smaller than plotted point
labels. Noah‐MP LIS cases using default parameter values are circled.
LSM = land surface model; RC = runoff coefficient; SSM = surface soil
moisture; Noah‐MP = Noah‐Multiple Physics; NWM = National Water
Model; LIS = Land Information System.
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addition, due to the independence of the SMAP_L4 SSM data from the USGS streamflow observations used
to construct observed RC, the superior skill of the SMAP_L4 data can be confidently ascribed to the
improved precision of its SSM estimates (as opposed to spurious error cross correlation; Crow et al., 2018).

3. Results
3.1. Variation and Impact of SSM/RC Correlation

Figure 3 plots the skill in LSM estimates of event‐scale RC (R[RCLSM, RCUSGS]) as a function of the LSM‐

predicted correlation between prestorm SSM and RC (R[SSMLSM, RCLSM]) calculated for each Noah‐MP
LIS case (Table 1) and the NWM. Plotted values are obtained by averaging sampled correlations across all
522 study basins in Figure 1. Due to this extensive spatial averaging, 95% confidence sampling intervals
for all plotted correlations are typically smaller than plotted symbols. Therefore, any visible gaps
between point labels in Figure 3 can generally be considered statistically significant. The positive sign of
R[SSMLSM, RCUSGS] values reflects the known tendency for wetter prestorm SSM conditions to produce lar-
ger event‐scale RC (Crow et al., 2017).

The variation of R[SSMLSM, RCLSM] between Noah‐MP (and NWM) cases is generally consistent with expec-
tations given the physical assumptions underlying each surface runoff parameterization. In both the SIM
TOP and BATS cases, surface runoff, and thus event‐scale RC, is modeled as a direct function of a quantity
closely related to SSM (i.e., Fsat and 2‐m soil moisture, respectively). Therefore, this type of “saturation
excess” runoff formulation tends to predict strong SSM/RC correlation (i.e., large R[SSMLSM, RCLSM]).
The single exception being SIM TOP case #5, where the use of a small f value (3 m−1) leads to relatively lower
R[SSMLSM, RCLSM] but also excessively small values of mean surface runoff (see Figure 2).

In contrast to the SIM TOP and BATS cases, the FD cases assign only secondary importance to prestorm SSM
values and instead bases RC estimates primarily on rainfall rate considerations via an “infiltration excess”
surface runoff formulation. As a result, R[SSMLSM, RCLSM] is relatively low for all FD cases. Applied values
of REFKDT in cases #10–#13 (0.5 to 5 [‐]) span the entire physically realistic range suggested by the Noah‐
MP user guide (Niu et al., 2011). As expected, correlation increases with increasing REFKDT (see Figure 3
and Table 1). However, even the largest applied REFKDT value (5.0 [‐] in case #13) yields relatively low cor-
relation (Figure 3), and values of REFKDT above 1.0 [‐] (i.e., FD cases #12 and #13) are associated with
unrealistically low levels of mean surface runoff (Figure 2). Therefore, it does not appear that the low
SSM/RC correlation bias in the FD cases can be realistically resolved solely through the recalibration
of REFKDT.

The low R[SSMLSM, RCLSM] correlation values obtained for the SIM GW cases (Figure 3) are unexpected
given the close conceptual connection between SIM GW and the (well‐correlated) SIM TOP cases. While lar-
ger f values tend to produce correspondingly larger R[SSMLSM, RCLSM] for the SIM GW cases (see Table 1
and Figure 3), SIM GW SSM/RC correlations remain less than SIM TOP even when utilizing a larger f value.
For example, SIM GW case #3 with f = 4 m−1 produces significantly less correlation than SIM TOP case #5
with f= 3m−1. This demonstrates that differences between the SIMGWand SIM TOP cases cannot be attrib-
uted solely to differences in f. An alternative possibility is that the difference is due to the enforced 1.5‐m
minimum for the SIM GW water table depth (ZWT; see section 2.3 above). This modification effectively
decouples SIM GW Fsat estimates from fast variations in SSM since larger values of ZWT are associated with
relatively slower water dynamics due to the assumed exponential decay of saturated hydrologic conductivity
with depth in both the SIM GW and SIM TOP cases. The relatively higher value of R[SSMLSM, RCLSM]
obtained from the NWM suggests that the NWM water table representation avoids this pitfall.

Results in Figure 3 also illustrate how low internal SSM/RC correlation is strongly associated with low RC
skill (R[RCLSM, RCUSGS]) in corresponding LSMRC estimates. Therefore, low SSM/RC correlation has a pro-
found influence on the ability of LSMs to adequately capture event‐scale RC variations. For example, low
values of R[RCLSM, RCUSGS] obtained from the SIM GW and FD cases in Figure 3 are associated with under-
representing the impact of prestorm SSM on event‐scale RC and, therefore, overstating the role of other fac-
tors (e.g., fine‐scale variations in precipitation intensity). Conversely, all other things being equal, the much
stronger correlation predicted by the SIM TOP and BATS parameterization cases enhances their ability to
track storm‐to‐storm variations in RC.
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Also included in Figure 3 is an extreme case (labeled “SSMdirect”) derived by directly sampling the Spearman
rank correlation between Noah‐MP prestorm SSM estimates and observed RC (R[SSMLSM, RCUSGS]). As
such, it corresponds to a case of assuming perfect correlation between SSM and RC and, consequently,
neglecting the impact of all other factors on modeled RC. Put another way, it summarizes the skill available
from considering only prestorm Noah‐MP SSM values and ignoring Noah‐MP runoff physics (and/or any
SSM modeling errors). The actual plotted value for the SSMdirect case is the median of the basin‐averaged
R[SSMLSM, RCUSGS] sampled separately for all Noah‐MP LIS cases in Table 1. However, since all 16
Noah‐MP cases yield R[SSMLSM, RCUSGS] values within a very tight range (±0.02 [‐]), the plotted
SSMdirect case can be considered a single fixed value across all cases. Note also that this lack of case‐to‐case
variability in SSM supports our earlier assumption that overall SSM/RC coupling is dominated by RC depen-
dence on SSM (as oppose to SSM dependence on RC). That is, large case‐to‐case variations in RC skill found
in Figure 3 (reflecting the importance of RC dependence on SSM) do not feedback into comparably large var-
iations in SSM.

While underestimating the dependence of RC on SSM appears to be a significant problem in Figure 3, there
is less evidence that overestimating this dependence harms LSM RC skill. There is a slight decrease in RC
skill (R[RCLSM, RCUSGS]) observed at high SSM/RC correlation (R[SSMLSM, RCLSM]); however, this decrease
is not statistically significant, and using SSM as a proxy for RC—that is, neglecting Noah‐MP runoff esti-
mates altogether, as captured via the SSMdirect case of Figure 3—only slightly underperforms RC estimates
obtained from the best Noah‐MP surface runoff parameterization cases. In fact, the SSMdirect case provides
significantly more RC skill than RC estimates made by 10 out of the 17 total LSM cases considered in
Figure 3. In these cases, LSM RC estimates are less skillful for describing event‐scale variations in RC than
their corresponding prestorm SSM estimates. This represents a physical deficiency given that SSM inputs
into these runoff parameterizations are more skillful (for event‐scale RC estimation) than the actual RC out-
puts provided by the LSM runoff parameterization.

3.2. Spearman Rank Versus Pearson Correlation

All correlations plotted Figure 3 are Spearman rank type and therefore reflect nonparametric skill in the RC
estimates (or, for the SSMdirect case, a soil moisture proxy for RC). In contrast, a Pearson correlation
describes the ability of each estimate to linearly correlate with observed RC. Therefore, examining differ-
ences between Spearman rank and Pearson correlation results provides an assessment of linearity. To this
end, we regenerated Figure 3 for the case of sampling Pearson correlation instead of Spearman rank correla-
tion (not shown). For cases based on Noah‐MP and NWM RC estimates (i.e., all labeled points in Figure 3
except for the SSMdirect case) this transition had little impact—suggesting that the relationship between
LSM‐estimated RC and observed RC is relatively linear.

However, the use of Pearson correlation led to a reduction in skill for the SSMdirect case in Figure 3—which
captures the linear correlation between LSM‐predicted prestorm SSM and observed RC (R[SSMLSM,
RCUSGS]). Consistent with earlier results in Crow et al. (2017), this reduction suggests the presence of
modest monotonic nonlinearity in the relationship between prestorm SSM estimates and event‐scale RC.
Therefore, while LSM runoff parameterizations (used to convert prestorm SSM into RC) do not appear to
generally improve upon the nonparametric skill of prestorm SSM estimates (see discussion above and in
section 3.2), they may still provide a superior linear proxy for true RC. While the rest of our analysis is
restricted to the use of Spearman rank correlation, this subtlety should be kept in mind.

3.3. Observed SSM/RC Correlation

Figure 3 suggests that establishing adequate RC dependence on SSM is critical for obtaining skillful RC esti-
mates from LSMs. An external source of observed correlation estimates can be obtained by sampling the
Spearman rank correlation between prestorm, basin‐averaged SMAP_L4 SSM values (described above in
section 2.3) and event‐scale USGS‐observed streamflow volumes (normalized by event‐scale NLDAS‐2 pre-
cipitation volumes to produce an observation‐based, event‐scale RC value). Figure 4 plots a map of bench-
mark SSM/RC correlation estimates (R[SSMSMAPL4, RCUSGS]) obtained in this way.

It is difficult to discern coherent regional patterns and/or clear correlation with known land surface charac-
teristics within Figure 4. There appears to be a tendency for higher values of R[SSMSMAPL4, RCUSGS] along
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the Appalachian Mountains in eastern CONUS and lower values in flatter (and generally drier) areas of cen-
tral and north central CONUS. This may reflect the greater role of saturation excess surface runoff mechan-
isms (and thus higher SSM/RC correlation) in wetter areas with more topographic relief. However, this
interpretation is speculative, and it should be noted that some patterns in Figure 4 are likely the spurious
reflection of spatially varying errors in SMAP_L4 SSM estimates.

Amore certain inference is that R[SSMSMAPL4, RCUSGS] values in Figure 4
are uniformly positive and relatively large (see inset histogram). This is
consistent with the suggestion in Figure 3 that relatively strong SSM/RC
correlation is required for Noah‐MP (or NWM) cases to accurately capture
event‐to‐event variations in RC. In addition, it implies that observed
R[SSMSMAPL4, RCUSGS] in Figure 4 can describe basin‐to‐basin (and
case‐to‐case) variations in RC skill by diagnosing bias in LSM estimates
of SSM/RC correlation.

To this end, Figure 5 plots the skill of LSM RC estimates (i.e., R[RCLSM,
RCUSGS]) as a function of bias in LSM SSM/RC correlation estimates rela-
tive to observed correlation plotted in Figure 4 (i.e., R[SSMLSM, RCLSM] ‐
R[SSMSMAPL4, RCUSGS]). Results are plotted for each basin individually
(pooled across all 16 Noah‐MP parameterization cases summarized in
Table 1 plus the NWM simulation). In the resulting point cloud, there is
a clear tendency for the best RC estimates to be associated with LSMs that
best match observed SSM/RC correlation levels. Since all LSM cases uti-
lize the same NLDAS‐2 forcing data and apply the same simple routing
scheme, RC variations are the only source of case‐to‐case variability in
streamflow results. Therefore, patterns in Figure 5 do not qualitatively
change when streamflow skill is considered in place of RC skill.

As previously seen in Figure 3, the largest identifiable LSM problem in
Figure 5 is the underrepresentation of RC dependence on SSM. Note, for
example, the large quantity of negative abscissa points in Figure 5
(indicating R[SSMLSM, RCLSM] < R[SSMSMAPL4, RCUSGS]) and their asso-
ciation with low LSM RC skill (R[RCLSM, RCUSGS]). While less pro-
nounced, there is also evidence in Figure 5 that the overestimation of

Figure 4. Observed correlation between SMAP_L4 prestorm SSM and USGS‐based RC (R[RCLSM, RCUSGS]) for all 522
basins in Figure 1. Circle size scales with basin size. Inset contains the normalized histogram of R[RCLSM, RCUSGS]
results for all basins. SMAP_L4 = Soil Moisture Active Passive Level‐4 product; SSM = surface soil moisture;
USGS = United States Geological Survey; LSM = land surface model; RC = runoff coefficient.

Figure 5. Event‐scale LSMRC skill (R[RCLSM, RCUSGS]) versus event‐scale
correlation bias (R[RCLSM, RCLSM] − R[RCSMAPL4, RCUSGS]). The
point cloud consists of 17 × 522 = 8,874 symbols generated from all 16
Noah‐MP LIS simulations listed in Table 1 (plus the single NWM retro-
spective simulation) for each of the 522 basins shown in Figure 1. The red
line plots 25th, 50th (median), and 75th quartiles of R[RCLSM, RCUSGS]
values sampled within a moving window along the abscissa. The normalized
histogram describes the relative frequency of LSM correlation biases.
SMAP_L4 = Soil Moisture Active Passive Level‐4 product; SSM = surface
soil moisture; USGS = United States Geological Survey; LSM = land surface
model; RC = runoff coefficient; NWM = National Water Model.
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RC dependence on SSM can degrade RC skill (see the slight decline in LSM RC skill associated with large,
positive R[SSMLSM, RCLSM] minus R[SSMSMAPL4, RCUSGS] values). Note that this tendency was not signifi-
cant earlier in Figure 3 and emerges only after evaluating correlation bias separately (on a case‐by‐case and
basin‐by‐basin) relative to the observed datum (R[SSMSMAPL4, RCUSGS]). Despite the slight discrepancy in
the vertical support of SMAP_L4 (0–5 cm) and Noah‐MP (0–10 cm) SSM estimates, the LSM cases that exhi-
bit the lowest absolute bias in SSM/RC correlation. That is, the lowest values of abs(R[SSMLSM, RCLSM] −
R[SSMSMAPL4, RCUSGS]) are generally associated with the largest LSM RC skill (R[RCLSM, RCUSGS]).
Therefore, when used in conjunction with USGS RC observations, SMAP_L4 SSM estimates can robustly
detect both the overdependence and underdependence of LSM RC estimates on SSM.

As discussed above in section 2.1, several preprocessing decisions underpin our definition of a storm event
and thus all results presented in Figures 3–5. Nevertheless, key qualitative results appear relatively insensi-
tive to these choices. For example, modifying the storm event threshold within the range 5 to 15 mm/day has
only a small impact on results in Figure 3–5. Likewise, applying the HYSEP baseline separation algorithm to
isolate fast stormflow in USGS streamflow measurements, and utilizing only surface runoff estimates to cal-
culate RC, does not qualitatively impact results. Therefore, results are not affected by the presence (or
absence) of baseflow. Finally, utilizing Pearson (as opposed to Spearman rank) correlation to summarize
LSM RC skill (not shown) does not substantially alter Figure 5. These conclusions are broadly consistent
with Crow et al. (2017) who found that SSM/RC correlation results based on the ranked correlation between
prestorm SSM and event‐scale RC are relatively insensitive to the details of the approach used to define and
characterize storm events.

3.4. Individual Noah‐MP Surface Runoff Parameterizations

As mentioned above, the point cloud in Figure 5 is sampled across both space (i.e., all 522 basins in Figure 1)
and all 17 LSM parameterization cases (i.e., the 16 Noah‐MP cases listed in Table 1 plus the NWM simula-
tion). It is also instructive to subset results by individual Noah‐MP parameterization cases. To this end,
Figures 6–9 show example results for individual Noah‐MP runoff parameterization cases SIM GW, SIM
TOP, and FD and the NWM case. For brevity, only Noah‐MP LIS cases #2, #6, and #11 (corresponding to
the default SIM GW, SIM TOP, and FD parameterizations cases listed in Table 1, respectively) are discussed,
and the BATS case is omitted entirely.

Figure 6a is analogous to Figure 5 in that it plots bias in LSM SSM/RC correlation estimates (R[SSMLSM,
RCLSM] ‐ R[SSMSMAPL4, RCUSGS]) versus Noah‐MP RC skill (R[RCLSM, RCUSGS])—except now only for a
single SIM GW case (i.e., Noah‐MP LIS case #2 in Table 1). Here, nearly all basins demonstrate a deficit
of RC dependence on SSM (i.e., negative abscissa values in Figure 6a). As in Figure 5, this bias has an impact
on the skill of Noah‐MP RC estimates. In geographic terms, the low bias in SSM/RC correlation is strongest
in central CONUS (Figure 6b) and appears to be the source of relatively low Noah‐MP RC skill in this
region (Figure 6c).

Relative to the SIM GW case in Figure 6, internal LSM estimates of SSM/RC correlation (R[SSMLSM,
RCLSM]) are larger for the SIM TOP case (i.e., Noah‐MP LIS case #6 in Table 1) in Figure 7. This increased
correlation translates into improved LSM RC skill—particularly over central CONUS (cf. Figure 7c to
Figure 6c). Relative to R[SSMSMAPL4, RCUSGS], the SIM TOP overestimates RC dependence on SSM across
a large fraction of northern CONUS (see blue shading in Figure 7b). However, this does not translate into
a degradation of Noah‐MP RC estimates—which remain generally skillful (see red shading in Figure 7c).
This is consistent with earlier results in Figures 3 and 5 and demonstrates that the negative impact of
LSM SSM/RC overdependence, while not completely negligible, is less pronounced than that of underdepen-
dence. This can also be seen in Figure 7a where the overdependence of RC on SSM (i.e., positive R[SSMLSM,
RCLSM] minus R[SSMSMAPL4, RCUSGS] values) is associated with only a modest reduction in the skill of
Noah‐MP RC estimates. Results for the BATS surface runoff parameterization are generally consistent with
those of the SIM TOP parameterization case and therefore omitted here for brevity.

Moving to a free‐drainage (“FD”) parameterization (i.e., Noah‐MP LIS case #11 in Table 1) in Figure 8
returns to the case of underestimating RC dependence on SSM. Using an older version of the Noah model
(with a FD parameterization), Crow et al. (2017) previously noted this underestimation within the south cen-
tral United States. Figure 8 confirms this, while also indicating that this correlation bias extends throughout
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CONUS (see Figure 8b). The area of strongest correlation bias appears concentrated in central CONUS and
extends into the northern Great Plains region (see red shading in Figure 8b). This region of low correlation is
colocated with areas of relatively poor RC estimation skill (see blue shading in Figure 8c) and the poorly
drained “prairie pothole” region of north central CONUS—an area where a FD boundary condition is
expected to perform poorly.

All Noah‐MP FD cases produce a net low bias in mean SSM/RC correlation (Figure 3) – particularly in north
central CONUS. This bias can be reduced, but not removed, by increasing REFKDTwithin its physically rea-
listic range (see Table 1 and Figure 3). This suggests the SSM/RC correlation biases within the Noah‐MP FD
parameterization case cannot be easily resolved via the calibration of parameter values.

There also appears to be some geographic variation in the relationship between SSM/RC correlation bias and
RC skill. These quantities are tightly linked in, for example, central CONUS (see above and Figures 6–8). In
contrast, they diverge somewhat in extreme southeastern CONUS.While the Noah‐MP SIMGW (Figure 6b),

Figure 6. (a) Skill of Noah‐MP RC estimates (R[RCLSM, RCUSGS]) versus Noah‐MP SSM/RC correlation bias (R[RCLSM,
RCLSM] ‐ R[RCSMAPL4, RCUSGS]) for Noah‐MP SIM GW case #2. Dashed red line in (a) describes a moving‐window
median filter. Corresponding spatial maps of (b) Noah‐MP SSM/RC correlation bias and (c) skill of LSM RC estimates.
Noah‐MP = Noah‐Multiple Physics; SMAP_L4 = Soil Moisture Active Passive Level‐4 product; SSM = surface soil
moisture; USGS = United States Geological Survey; LSM = land surface model; RC = runoff coefficient;
SIM GW = simplified groundwater.
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SIM TOP (Figure 7b), and FD (Figure 7c) cases all underestimate RC dependence on SSM in this region,
they do not show a corresponding decrease in RC skill (see Figures 6c, 7c, and 8c). This region is well
known for its flat topography and karst carbonate geology and, therefore, a tendency toward low long‐
term RC (see Figure 1). These unusual hydrologic characteristics may conspire to disrupt the relationship
between SSM/RC correlation bias and RC skill seen elsewhere.

Finally, Figure 9 breaks out basin‐by‐basin results for the NWM. As noted above, the NWM performs as well
as any Noah‐MP LIS parameterization—with respect to both matching observed SSM/RC correlation
(Figure 9b) and obtaining skillful RC estimates (Figure 9c). This success is somewhat surprising given that
the NWM surface runoff formulation uses an infiltration‐excess approach for surface runoff generation and
has a close conceptual connection with the Noah‐MP FD case, which performs relatively poorly. Indeed,
there are clear similarities in the SSM/RC correlation bias patterns found in both cases (cf. Figure 8b to
Figure 9b). However, the NWM generally increases SSM/RC correlation—thus correcting for the low bias
found in the FD case (Figure 8c). This correction is particularly strong in central and east central CONUS
where the NWM strongly outperforms the FD case (cf. Figure 8c to Figure 9c) and suggests that the inclusion
of custom groundwater and overland flow modules in the NWM successfully increases both SSM/RC corre-
lation and RC skill in these regions. Nevertheless, pronounced underestimation of prestorm SSM/RC

Figure 7. Same as Figure 6, except for Noah‐MP SIM TOP case #6 (Table 1). SIM TOP = simplified TOPMODEL.
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correlation remains in the NWM for multiple basins in central and eastern CONUS (see red circles in
Figure 9b), which is reflected (albeit weakly) in degraded RC skill for these regions (see Figure 9c).

3.5. Implications for Ungauged Basins

Across all four cases shown in Figures 6a, 7a, 8a, and 9a, the maximum value of the dashed red trend line is
reached at, or near, a SSM/RC net correlation bias of zero. This result suggests that, regardless of which sur-
face runoff parameterization case is applied, minimized absolute bias in LSM estimates of SSM/RC correla-
tion (relative to SMAP Level 4 SSM andUSGS RC estimates) is generally associated withmaximized RC skill.
Given the large explanatory power of SMAP_L4 SSM for RC estimation, and the relative lack of conse-
quences associated with overestimating the dependence of RC on SSM (Figure 3), one possibility in
ungauged basins is to use SMAP_L4 prestorm SSM values as a proxy for RC. In this approach, Noah‐MP
parameterization cases are ranked based on the positive Spearman rank correlation between their event‐
scale RC estimates and SMAP_L4 prestorm SSM (R[SSMSMAPL4, RCLSM]). For each individual basin,
Noah‐MP cases associated with the largest (positive) R[SSMSMAPL4, RCLSM] value are selected with the
expectation that they also provide the highest LSM RC skill (R[RCLSM, RCUSGS]).

Figure 10 examines such a strategy by plotting R[SSMSMAPL4, RCLSM] versus R[RCLSM, RCUSGS]. Each of the
8,352 gray circles represents one of the 16 Noah‐MP LIS parameterizations (the NWM case is omitted due to

Figure 8. Same as Figure 6, except for Noah‐MP FD case #11 (Table 1). MP = Multiple Physics; FD = free drainage.
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its slightly different historical period) within one of the 522 study basins in Figure 1. The resulting scatterplot
suggests that substantial positive rank correlation between Noah‐MPRC and SMAP_L4 prestorm SSM tends
to identify LSM parameterization cases with themost skillful RC estimates. Given that abscissa values can be
obtained in the absence of streamflow observations, this implies a potential case selection strategy for
ungauged hydrologic basins. To this end, red crosses in Figure 10 reflect results for the single Noah‐MP
LIS parameterization case (selected individually for each basin) with the largest R[SSMSMAPL4, RCLSM]
values. Such classification does not require streamflow data—yet still successfully eliminates most
Noah‐MP LIS cases with poor RC skill (i.e., gray circles in Figure 10 with small positive or negative
R[RCLSM, RCUSGS] values).

However, it should be noted that the relative success of this strategy depends on the baseline parameteriza-
tion case considered. For each Noah‐MP LIS case in Table 1, Figure 11 shows a boxplot of RC rank correla-
tion skill across all basins. For comparison, the horizontal black lines in the figure show the same quantiles
for the case of applying the case selection strategy described above (i.e., for each basin selecting the single
Noah‐MP parameterization case whose RC estimates maximize R[SSMSMAPL4, RCLSM]). Such basin‐by‐
basin case selection clearly improves upon the least successful Noah‐MP LIS parameterization cases (i.e.,
cases #1–5 and #8–13). However, it offers no advantage relative to the most successful Noah‐MP LIS cases

Figure 9. Same as Figure 6, except for the NWM simulation. NWM = National Water Model.
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(i.e., cases #6 and 7 and #14–16). The uniform application of these “suc-
cessful” cases performs at least as well as selecting cases on a basin‐by‐
basin basis using our proposed calibration strategy. This calls into ques-
tion the true skill of the approach in robustly identifying spatially variable
patterns in optimal Noah‐MP cases. Instead, the approach seems best sui-
ted to broadly identifying Noah‐MP parameterization cases that are
clearly suboptimal. In addition, this approach should be compared to
more direct calibration strategies that attempt to improve streamflow esti-
mates by direct calibration against retrieved SSM (see, e.g., Koster
et al., 2018).

4. Summary and Conclusions

The dependence of RC on SSM is a critical component of accurately mod-
eling the surface water and energy balance and has direct relevance for
the use of LSMs in hydrologic forecasting applications—including the
proposed use of the Noah‐MP LSM as the modeling core for the Unites
States NWM. Results here reveal a striking consistency between
SSM/RC correlation (captured by various Noah‐MP runoff parameteriza-
tion cases) and the skill of Noah‐MP RC estimates (Figure 3). For the SIM
GW and FDNoah‐MP cases, failure to properly leverage skill contained in
prestorm Noah‐MP SSM estimates ensures that SSM estimates often cor-
relate better with the observed RC than actual Noah‐MP RC estimates
(Figure 3). An analysis of variations in keymodel parameters suggests that

performance issues in these Noah‐MP surface runoff parameterizations cases are not easily resolved via
model calibration (section 3.1).

In contrast, the SIM TOP and BATS Noah‐MP cases demonstrate significantly higher levels of prestorm
SSM/RC correlation and relatively higher RC skill. Somewhat surprisingly, the simple, power law relation-

ship between 2‐m soil moisture and saturated fraction employed by the
BATS surface runoff case produces the highest RC skill (Figure 3) and
very good estimates of long‐term mean runoff (Figure 2). However, even
in these best‐case scenarios, the added RC skill provided by the LSM sur-
face runoff parameterizations (versus the SSMdirect case of simply using
prestorm SSM as a RC proxy) remains somewhat marginal (Figure 3).

Two caveats should be noted regarding these results. First, nonpara-
metric skill is quantified based on sampled estimates of Spearman rank
correlation. If (linear‐based) Pearson correlation is applied instead,
larger marginal skill differences are found in Noah‐MP and NWM RC
estimates relative to the underlying prestorm SSM estimates. Second,
the parameter sensitivity analysis presented here is admittedly cursory.
More comprehensive studies (see, e.g., Nasonova et al., 2009) generally
assign a higher level of importance to calibration for optimizing LSM
runoff estimates.

While the theoretical benefits of basing LSM runoff parameterizations on
saturation excess runoff concepts are well known, the recent availability
of SSM products from L‐band satellite missions (e.g., SMAP) affords a
new opportunity to directly measure these advantages. For example, the
strong relationship between SSM/RC correlation and LSM RC skill in
Figure 3 suggests that bias in SSM/RC correlation can be used to diagnose
and predict variations in the quality of LSM RC estimates. In fact,
independent estimates of SSM/RC correlation derived from SMAP_L4
prestorm SSM, NLDAS‐2 precipitation, and USGS streamflow observa-
tions can be spatially mapped (Figure 4) and used as the baseline for

Figure 10. Skill of LSM RC estimates (R[RCLSM, RCUSGS]) plotted against
the rank correlation between prestorm SMAP_L4 SSM and LSM RC
(R[SSMSMAPL4, RCLSM]). The 8,352 gray circles represent all 16 Noah‐MP
LIS cases (Table 1) across all 522 study basins. The 522 red crosses represent
the single case for each basin with maximized R[SSMSMAPL4, RCLSM].
LSM = land surface model; RC = runoff coefficient; USGS = United States
Geological Survey; SMAP_L4 = Soil Moisture Active Passive Level‐4 pro-
duct; Noah‐MP = Noah‐Multiple Physics; LIS = Land Information System;
SSM = surface soil moisture.

Figure 11. For each of the 16 Noah‐MP LIS parameterization cases listed in
Table 1, box plots (i.e., 25th quartile, median, and 75th quartile) of
Noah‐MP RC skill (R[RCLSM, RCUSGS]) sampled across the 522 study
basins. Horizontal lines show the same information for selecting the single
Noah‐MP case (on a basin‐by‐basin basis) with maximized R[SSMSMAPL4,
RCLSM] (i.e., parameterization cases represented by red crosses in
Figure 10). Noah‐MP = Noah‐Multiple Physics; LIS = Land Information
System; LSM = land surface model; RC = runoff coefficient;
USGS = United States Geological Survey; SMAP_L4 = Soil Moisture
Active Passive Level‐4 product.
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correlation bias estimates that explain a large fraction of variability in the skill of event‐scale LSM RC esti-
mates (Figure 5). Across the entire range of land surface and climate conditions present in CONUS, and
across the broad range of surface runoff parameterizations described in Table 1, a coherent relationship
emerges between SSM/RC correlation bias and the event‐scale RC skill. Most notably, the performance is
maximized in the case of zero correlation bias. This suggests that bias in prestorm SSM/RC correlation esti-
mates provides a unifying diagnostic for LSM‐based RC estimates that describes RC skill variations encoun-
tered across both space and via the use of multiple runoff physical parameterizations. Therefore, once
quantified using the SMAP_L4 SSM product, this diagnostic bias can be used to map variations in LSM per-
formance and explain geographic patterns in the RC skill of individual LSM parameterization cases (see
Figures 6–9). This represents an advancement in our ability to understand, and thus address, spatial and
case‐based variations in LSM performance.

Certain correlation biases (e.g., the negative biases in SSM/RC correlation captured by the FD parameteriza-
tion case) are physically intuitive; however, the source of others is less apparent. For example, reasons
behind higher prestorm SSM/RC correlation in the SIM TOP cases versus the SIM GW cases are unclear
(since the two share relatively similar runoff physics). One possibility is that the difference is due to the spe-
cification of a minimum depth‐to‐water table in the Noah‐MP v3.6 SIM GW parameterization. However,
additional work is needed to confirm this hypothesis.

While the proposed use of the Noah‐MPmodel within theNWM is amotivating factor here, it should be noted
that the Noah‐MP configuration currently implemented in the NWM does not correspond perfectly to any of
the Noah‐MP LIS cases listed in Table 1 and is subject to future change. Nevertheless, Version 1.2 of the pub-
licly posted NWM retrospective run performs relatively well. It contains adequate SSM/RC correlation and
exhibits relatively good rank correlation‐based RC skill (see Figure 3). The inclusion of novel groundwater
and overland flow modules in the NWM appears to enhance its ability to accurately reflect SSM/RC correla-
tion versus the Noah‐MP FD baseline case, which, in turn, enhances the NWM's RC skill (compare Figures 8
and 9). There is, however, room for improvement. For example, a slight degradation in NWMRC skill is noted
for basins containing large negative SSM/RC correlation biases (see Figure 9a)—suggesting an ongoing role
for the SMAP_L4 soil moisture product in refining future versions of the NWM.

Even though SSM/RC correlation biases (plotted along the abscissa of Figure 5) cannot be directly detected
in ungauged basins, it is possible to calibrate LSM RC estimates by using event‐scale SMAP_L4 prestorm
SSM values as a proxy for (unavailable) RC observations and maximizing the Spearman rank correlation
between SMAP_L4 and modeled RC. The relative success of the SMdirect parameterization case in
Figure 3 suggests that this approach has some merit. Indeed, selecting Noah‐MP surface runoff parameter-
izations, on a basin‐by‐basin basis, that maximize the rank correlation of Noah‐MP RC estimates with
SMAP_L4 prestorm SSM enhances the overall performance of Noah‐MP RC estimates (Figure 10). This is
notable because such a strategy does not require streamflow observations and is therefore feasible in
ungauged basins. However, our proposed approach fails to improve upon the alternative of broadly applying
a single, well‐performing Noah‐MP LIS parameterization case (Figure 11). This calls into question its ability
to provide robust, geographically varying information for Noah‐MP case selection and/or calibration.
Therefore, additional work is needed to develop more effective ungauged basin calibration strategies based
on the relationship between correlation bias and LSM RC skill described here.
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